Дефекты в кристаллах презентация по физике. Презентация де-фекты в кристаллах

Cлайд 1

СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела

Cлайд 2

Содержание Раздел 1 Виды отдельных элементарных дефектов и их свойства. Дефекты в простых веществах 1.1.Классификация дефектов простых веществ 1.1.1.Междоузлие 1.1.2.Вакансии в ковалентных соединениях 1.1.3. Характеристики точечных дефектов 1.1.4. Междоузлия в простых веществах и их характеристики 1.1.5. Дефекты упаковки 1.1.6. Неупорядоченные сплавы. Примесные дефекты 1.1.7. Упорядоченные сплавы. Типы решеток с упорядочением 1.2.Равновесные и неравновесные дефекты 1.2.1.Равновесная концентрация точечных дефектов в простых веществах 1.3. Дефекты упорядочивающихся сплавов 1.3.1.Метрика дальнего порядка в упорядочивающихся сплавах 1.3.2.Метрика ближнего порядка в упорядочивающихся сплавах. Связь дальнего порядка и среднего значения ближнего порядка в упорядочивающихся сплавах 1.3.3.Температурная зависимость концентрация равновесных дефектов замещения в упорядочивающихся сплавах 1.3.4. Температурная зависимость концентрация равновесных вакансий в упорядочивающихся сплавах

Cлайд 3

Содержание Раздел 2. Описание дефектов кристаллической структуры в рамках теории упругости 2.1. Основные положения механики сплошной среды 2.1.1. Определения 2.1.2. Закон Гука 2.1.3. Закон Гука в обобщенном виде 2.1.4.Общий вид уравнений в абсолютных смещениях 2.2. Смещение атомов в кристаллической решетке с точечными дефектами. Изменение объема 2.3. Поведение дефекта во внешнем поле смещения 2.4. Плотность внутренних сил, эквивалентных центру дилатации 2.5. Взаимодействие дефектов с внешним упругим полем 2.6. Упругое взаимодействие точечных дефектов 2.7. Непрерывное распределение точечных дефектов в упругом поле 2.8. Течение кристалла. Ползучесть 2.9. Кинетика пор в кристалле 2.10. Неустойчивость однородного распределения точечных дефектов 2.11. Дислокации 2.12. Пластическая деформация кристаллов 2.13. Одномерная модель дислокации – модель Френкеля–Конторовой

Cлайд 4

Содержание Раздел 3. Радиационные дефекты 3.1. Методы СОЗДАНИЯ РАДИАЦИОННЫХ ДЕФЕКТОВ 3.1.1. Облучение в реакторе 3.1.2. Облучение на ускорителях тяжелых ионов 3.1.3. Облучение в высоковольтном электронном микроскопе 3.1.4. Основные преимущества и недостатки экспрессивных методов радиационного испытания 3.2. Первичные процессы взаимодействия частиц и излучений с твердым телом 3.2.1. Общие представления о процессах взаимодействия частиц с твердым телом 3.2.2. Взаимодействие нейтронов с веществом 3.2.3. Взаимодействие ускоренных ионов с веществом 3.2.4. Распределение по глубине проникновения внедренных ионов и дефектов, созданных ионами 3.2.5. Взаимодействие электронов с веществом 3.2.6. Взаимодействие - квантов с веществом 3.3. Основные условия воспроизводимости явлений реакторного повреждения при облучении на ускорителе

Cлайд 5

Содержание Раздел 4. Теоретическое сравнение структуры случайных полей радиационных дефектов, образующихся при облучении быстрыми частицами в пленочных образцах 4.1. Каскад атомных столкновений. Индивидуальные характеристики 4.2. Случайное поле дефектов. Статистика повреждений 4.3. Модель разреженных каскадов 4.4. Модель плотных каскадов 4.5. Параметры имитации 4.6. Имитационные соотношения для модельных спектров ПВА 4.7. Методика определения временного ресурса сверхпроводящих соединений 4.8. Расчет характеристик поля повреждений при облучении тонких пленок ионами и нейтронами со спектром, близким к реальному спектру ТЯР

Cлайд 6

Введение «Физика реального твердого тела» изучает физические явления и процессы, обусловленные или возникающие при высоком содержании дефектов в твердом теле, пытается выработать предсказательные теории, определяющие характеристики твердого тела. Все области применения и «вынужденного» использования твердого тела, так или иначе, определяются дефектами структуры. Простейшие примеры: проводимость идеального твердого тела равна нулю; критический ток в сверхпроводниках также равен нулю в отсутствии пиннинга системы вихрей на дефектах структуры. Важным направлением является контролируемое введение в матрицу примесей и дефектов, а также радиационно-стимулированное изменение структуры. Начало интенсивного развития этого направления соответствует появлению полупроводниковых приборов. Это направление можно назвать «Физической технологией» поскольку конструирование и создание новых приборов и инструментария исследователей определяется разработкой детальной физической картины процессов, интерпретации измеряемых величин. Естественное уменьшение размеров изучаемых объектов и новые измерительные возможности привели к появлению нового направления «Наносистемы». Контролируемое введение в матрицу примесей и дефектов представляет и физический интерес для анализа применимости тех или иных представлений физики конденсированных сред. Например, для анализа механизма сверхпроводимости в соединениях со структурой А15, ВТСП.

Cлайд 7

Ряд проблемных задач физики конденсированных систем имеет фундаментальный характер Предсказание механических свойств реальных твердых тел, в том числе в интенсивных радиационных полях; Электрические свойства и явления в конденсированных системах с высоким содержанием дефектов; Механизмы сверхпроводимости, в том числе – высокотемпературной, улучшение критических параметров сверхпроводников; Электронные и фотонные свойства органических полупроводников и кристаллов

Cлайд 8

Cлайд 9

Классификация дефектов простых веществ. Определение: Любые нарушения или искажения в регулярности расположения атомов кристалла считают дефектом кристаллической решетки. Различают следующие виды отдельных дефектов: Тепловое движение атомов Междоузельные атомы и вакансии Примесные атомы Граница кристалла Поликристаллы Дислокации Статические смещения решетки вблизи дефекта

Cлайд 10

1.Тепловое движение атомов отклонение атомов от положения равновесия; это термодинамически-равновесный вид дефекта, имеющий динамический характер.

Cлайд 11

2.Междоузельные атомы и вакансии. Эти дефекты имеют тенденцию быть равновесными. Характерное время релаксации к равновесному состоянию может быть достаточно большим. Действительно, процесс диффузии дефектов, определяющий их распределение в твердом теле, является термоактивируемым процессом, поэтому при недостаточно больших температурах часто встречаются неравновесные состояния систем этих дефектов. Значительным отличием систем точечных дефектов является наличие их взаимодействия между собой (через атомы матрицы), что приводит, в частности, к образованию их комплексов (ансамблей), конденсата в матрице, т.е. равновесное состояние системы точечных дефектов в большинстве случаев является неоднородным в пространстве (например, вакансии - ансамбль вакансий – пора).

Cлайд 12

3. Атомы примесей Примеси, даже при малой концентрации, могут существенно влиять на свойства кристалла, например, они вносят заметный вклад в проводимость полупроводников Плотность атомов в конденсированных системах 1022 - 1023 атомов/см3, концентрация дефектов в зависимости от предыстории получения образца меняется от 1012 - 1020 атом/см3.

Cлайд 13

4. Граница кристалла Этот дефект приводит к искажениям даже внутри матрицы и к нарушению кристаллической симметрии в областях примыкающих к границе. Картина зерен в поликристалле 5. Поликристаллы зерна или кристаллиты с разной ориентацией. Объем зерен больше физически представительного объема. Поперечный размер зерен порядка 10-3 10-6 см Свойства поликристаллов обусловлены как самими кристаллическими зернами, так и межзёренными границами. Если зерна малы и ориентированы хаотично, то в поликристаллах не проявляется анизотропия свойств, свойственная, например, монокристаллу. Если есть определенная ориентация зерен, то поликристалл является текстурированным и обладает анизотропией.

Cлайд 14

Выход краевой дислокации на границу Винтовая дислокация роста кристалла. Скопление дислокаций на межзеренных границах Сетка дислокаций Винтовая дислокация 5. Дислокации – неравновесный тип дефекта, т.е. их появление обусловлено предысторией образца и связано либо ростом кристаллита, либо действием внешних нагрузок или воздействий. Различают несколько типов дислокаций: краевые, винтовые, смешанные. Их скопления часто формируют межзеренные границы.

Cлайд 15

В зависимости от размерности различают следующие типы дефектов: 1. Точечные дефекты: Междоузельные атомы и вакансии, Примесные атомы 2. Линейные дефекты:Дислокации 3. Плоские дефекты: Граница кристалла, Поликристаллы Феноменологические характеристики точечных дефектов: - энергия образования; - энергия миграции; - дилатационный объём.

Cлайд 16

В идеальной структуре какого-либо типа, атом занимает положение, соответствующее узлу решетки. Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение. Таких положений может быть для структуры несколько. Различные виды междоузельных атомов углерода в решетке алмаза: а – Тетраэдрическое – T; б – Гексагональное –H; в – междоузлие посредине связи – M; г – Расщепленное междоузлие (гантель -). Междоузлие

Cлайд 17

Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение и возмущает распределение электронной плотности внутри элементарной ячейки Собственное междоузлие в алмазе Распределение электронной плотности в элементарной ячейке алмаза и в ячейке содержащей тетраэдрическое междоузельный атом углерода. Уровень изображенных изоповерхностей один и тот же =1.25

Cлайд 18

Вакансии в ковалентных соединениях Отсутствие атома в узле решетки создает точечный дефект типа вакансии: Конфигурация вакансии и дивакансии в алмазе Картина смещений отличается от смещений для междоузельных атомов направлением, обычно ближайшее окружение смещается к пустому узлу. В соединениях ионного типа вакансии образуются парами, что является энергетически более выгодной конфигурацией для данной структуры (дефект Шоттки). Сказывается необходимость соблюдения нейтральности. Такой тип дефектов проявляются тем выгоднее, чем выше ионность связи, например в NaCl. Отметим также, что в ВТСП типа YBa2Cu3O7 связь наблюдается частично ионной связи.

Cлайд 19

Атома нет в соответствующем узле, что приводит к возмущению распределение электронной плотности внутри элементарной ячейки Одиночная вакансия в алмазе Распределение электронной плотности в идеальной элементарной ячейке алмаза и в ячейке содержащей одиночную вакансию. Уровень изображенных изоповерхностей один и тот же =1.25

Cлайд 20

Cлайд 21

Модель образования вакансии в простых веществах Можно предложить следующий механизм образования вакансии. Атом выносится на границу кристалла, при этом число частиц в системе не изменяется. Действительно, простое удаление атома из узла решетки кристалла на бесконечность изменяет число частиц в системе и для расчета термодинамического потенциала системы потребуется учитывать этот факт. В окрестности образовавшейся вакансии будет происходить релаксация атомов (красные стрелки на рисунке). Будем считать, что два атома вещества взаимодействуют друг с другом посредством парного потенциала взаимодействия, который не зависит от окружения атомов.

Cлайд 22

Энергия атома, находящегося в узле кристалла, равна Eузл=z1*φ(R*), где число ближайших соседей порядка z1 6 - 8, R*– равновесное межатомное расстояние, оценка потенциала φ(R*) может быть сделана, например, из энергии сублимации вещества, что дает φ(R*) ≈ 0.2 ÷ 0.3eV. Таким образом, величина энергии атома в узле решетки равна Eузл~ 1.6 ÷ 2.4 эВ. Такая энергия должна быть затрачена на разрыв связей при образовании вакансии. Однако вынутый атом размещается на поверхности, следовательно, можно считать, что половина разорванных связей восстанавливается. Энергия атома, находящегося на поверхности равна. Таким образом, величина энергия формирования вакансии Ef ≈ 0.8 ÷ 1.2 эВ. Миграция ваканисии Рассмотрим миграцию вакансий. Чтобы атом А перепрыгнул на пустой узел, в котором расположена вакансия, казалось бы ему не нужно преодолевать барьер, но это не так – надо разорвать связи. Расчет энергии формирования вакансии

Cлайд 23

Кроме того, вдоль траектории миграции вакансии (или атома А) возникает энергетический барьер (энергетическая линза), создаваемый ближайшими атомами. Это наиболее наглядно видно в трехмерном кристалле Число ближайших соседей в сечении ABCD обычно меньше, чем у узле, z2 = 4. Если предположить, что парный потенциал меняется слабо, то величину энергетического барьера для миграции вакансии можно оценить Emγ ≈ 0.8 ÷ 1 эВ.

Cлайд 24

Дилатационный объем вакансии Пусть ω0 – объем, приходящийся на один атом твердого тела. При образовании вакансии поверхность за счет релаксации исказится, и объем кристалла V изменится. Оценки дают примерно δV(1)= - 0.1ω0, это результат был получен на основании результатов дилатационных экспериментов, связанных с введением в образец множества вакансий. Отметим, что в матрице окружающей область образования вакансии происходит некоторое увеличение плотности вещества за счет релаксации. В рассмотренном выше механизме образовании вакансии атом выходит на поверхность. Связанное с этим дополнительное изменение объема составляет δV(2)=+ω0. Таким образом, суммарное изменение объема кристалла равно: δV=δV(1) + δV(2) =+0.9ω0 Изменение объема

Дефекты в кристаллах подразделяют на:

Нульмерные

Одномерные

Двумерные


Точечные дефекты(нульмерные) -нарушения периодичности в изолированных друг от друга точках решетки; во всех трех измерениях они не превышают одного или нескольких межатомных расстояний (параметров решетки). Точечные дефекты – это вакансии, атомы в междоузлиях, атомы в узлах «чужой» подрешетки, примесные атомы в узлах или междоузлиях.


Вакансии – отсутствие атома или иона в узле кристаллической решетки; Внедренными или междоузельными атомамиили ионами могут быть как собственные, так и примесные атомы или ионы, отличающиеся от основных атомов по размеру или валентности. Примеси замещения заменяют частицы основного вещества в узлах решетки.





Линейные (одномерные) дефекты – Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла. Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.



Поверхностные дефекты кристаллической решетки. К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.



Вывод: все виды дефектов в не зависимости от причины их возникновения приводят к нарушению равновесного состояния решетки и увеличивают ее внутреннюю энергию.



Диффузия процесс переноса материи или энергии из области с высокой концентрацией в область с низкой. Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Диффузия в кристаллах - это процесс, при котором атомы могут переходить из одного узла в другой. Автоионная микроскопия – это метод прямого наблюдения кристаллической решетки металлов и сплавов с атомарным разрешением.


Диффузионные процессы в твердых телах заметно зависят от структуры данного кристалла и от дефектов кристаллического строения. Дефекты, появляясь в веществе, или облегчают атомные перемещения, или затрудняют их, работая как ловушки для мигрирующих атомов.




ДИФФУЗИЯ – ПРОЦЕСС СЛУЧАЙНЫХ БЛУЖДАНИЙ Первый закон Фика: Частота скачков атомов: n = n 0 e - Q / kT, где Q - энергия активации диффузии, k – постоянная Больцмана, n 0 – константа. Коэффициент диффузии D зависит от температуры кристалла по закону Аррениуса: D = D 0 e - Q / kT Энергия активации диффузии зависит как от энергии образования конкретного дефекта E f, так и от энергии активации его миграции E m: Q = E f + E m.


АТОМНЫЕ МЕХАНИЗМЫ ДИФФУЗИИ Механизм обмена атомов местами; кольцевой механизм; механизм прямого перемещения атомов по междоузлиям; механизм непрямого перемещения межузельной конфигурации; краудионный механизм; вакансионный механизм; дивакансионный механизм; механизмы диффузии по дислокациям; механизмы диффузии по границам зерен в поликристаллах.


ВАКАНСИОННЫЕ МЕХАНИЗМЫ Энергия активации миграции по вакансионному механизму для таких металлов, как медь, серебро, железо и т.п., равна приблизительно эВ (тот же порядок величины имеет и энергия образования вакансии). Простейшим вакансионным кластером является объединение двух вакансий – бивакансия (2V). Энергия, необходимая для такого перемещения, часто оказывается меньшей, чем одной вакансии.


МЕЖУЗЕЛЬНЫЕ МЕХАНИЗМЫ Появление межузельных атомов в кристаллах может быть обусловлено способом приготовления или эксплуатации материала. Межузельные атомы можно разделить в кристаллах на собственные и примесные (инородные) межузельные атомы. Инородные (примесные) атомы также в большинстве случаев образуют с собственными атомами гантели, но их называют смешанными. Изобилие межузельных конфигураций порождает изобилие механизмов миграции с помощью межузельных атомов.




Вакансия должна притягиваться в область сжатия над крайним атомным рядом лишней полуплоскости, а межузельный атом – в область расширения, расположенную снизу полуплоскости. Простейшие дислокации представляют собой дефект в виде незавершенной внутри кристалла атомной полуплоскости.


Диффузия по дефектным местам в кристаллах имеет специфические особенности. Прежде всего она идет более легко, чем диффузия по бездефектным механизмам. Но ее источники небезграничны: концентрации дефектов в процессе диффузии практически всегда убывают за счет аннигиляции разноименных дефектов, ухода дефектов на так называемые стоки. Но если концентрация дефектов велика, их роль в диффузии настолько возрастает, что приводит к так называемой ускоренной диффузии, ускоренным фазово-структурным превращениям в материалах, ускоренной ползучести материалов под нагрузкой и т.п. эффектам.


ЗАКЛЮЧЕНИЕ Перечень механизмов миграции по дефектным местам в кристаллах постоянно пополняется по мере все более углубленного изучения дефектов кристаллического строения вещества. Включение того или иного механизма в процесс диффузии зависит от многих условий: от подвижности данного дефекта, его концентрации, температуры кристалла и других факторов.

    Слайд 1

    Идеальных кристаллов, в которых все атомы находились бы в положениях с минимальной энергией, практически не существует. Отклонения от идеальной решетки могут быть временными и постоянными. Временные отклонения возникают при воздействии на кристалл механических, тепловых и электромагнитных колебаний, при прохождении через кристалл потока быстрых частиц и т. д. К постоянным несовершенствам относятся:

    Слайд 2

    точечные дефекты (межузельные атомы, вакансии, примеси). Точечные дефекты малы во всех трех измерениях, их размеры по всем направлениям не больше нескольких атомных диаметров;

    Слайд 3

    линейные дефекты (дислокации, цепочки вакансий и межузельныхатомов). Линейные дефекты имеют атомные размеры в двух измерениях, а в третьем - они значительно больше размера, который может быть соизмерим с длиной кристалла;

    Слайд 4

    плоские, или поверхностные, дефекты (границы зерен, границы самого кристалла). Поверхностные дефекты малы только в одном измерении;

    Слайд 5

    объемные дефекты, или макроскопические нарушения (закрытые и открытые поры, трещины, включения постороннего вещества). Объемные дефекты имеют относительно большие размеры, несоизмеримые с атомным диаметром, во всех трех измерениях.

    Слайд 6

    Как межузельные атомы, так и вакансии являются термодинамическими равновесными дефектами: при каждой температуре в кристаллическом теле имеется вполне определенное количество дефектов. Примеси в решетках имеются всегда, поскольку современные методы очистки кристаллов не позволяют еще получать кристаллы с содержанием примесных атомов менее 10й см-3. Если атом примеси замещает атом основного вещества в узле решетки, он называется примесью замещения. Если примесный атом внедряется в междоузлие, его называют примесью внедрения.

    Слайд 7

    Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д.), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий. Концентрация вакансий в значительной степени определяется температурой тела. Одиночные вакансии могут встречаться и объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дефекты в кристаллах. Кристалл заполнен дефектами. Как же влияют дефекты на прочность кристаллов. Они понижают прочность, в сотни, тысячи раз. Но, по мере того, как растет деформация кристалла, растет и число дефектов в нем. А так как дефекты взаимодействуют друг с другом, то, чем их больше, тем труднее им двигаться в кристалле. Получается парадокс: если есть дефект кристалл - кристалл деформируется и разрушается легче, чем, если дефекта нет. А если дефектов слишком много, то кристалл опять становится прочным, и чем больше дефектов, тем он более упорядочивается. Значит, если мы научимся управлять числом и расположением дефектов, мы сможем управлять прочностью материалов.

Слайд 21 из презентации «Кристалл» . Размер архива с презентацией 1397 КБ.

Химия 11 класс

краткое содержание других презентаций

«Классификация веществ» - Распределите вещества. Простые вещества-металлы. Золото. Zn. Сера. Классификация веществ. CO. Cl2. Металлы и неметаллы. Исключите лишнее по классификационной характеристике вещество. Простые вещества-неметаллы. Na2o. O2. Серебро. О.С.Габриэлян. 11 класс. Распределите вещества по классам.

«Круговорот элементов в природе» - Денитрофицирующие бактерии. Растительные белки. Бактерии. Атмосфера. Молнии. Круговорот азота. Большой круговорот. Разлагающиеся организмы. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Искусственные фосфатные удобрения; моющие средства. Фосфаты растворимы в воде, но не летучи.

«Дисперсные системы химия» - Дисперсная система твердое вещество - жидкость. Пористый шоколад. Хрящи. Дым. Минералы. Среда и фаза – жидкости. Керамика. Синерезис определяет сроки годности пищевых, медицинских и косметических гелей. В медицине. Шипучие напитки. Дисперсная система газ - жидкость. Смог. В пищевой промышленности. Поролон. Золи Гели. Истинные растворы. Полистирол. Суспензии. Дисперсная система жидкость - газ. Гели. Фаза и среда легко разделяются отстаиванием.

«Периодическая система химия» - И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Менделеев о месте элемента в системе; положение элемента определяется номерами периода и группы. предсказание «экаалюминия» (будущего Ga, открытого П. Лекоком де Буабодраном в 1875), «экабора» (Sc, открытого шведским учёным Л. Нильсоном в 1879) и «экасилиция» (Ge, открытого немецким учёным К. Винклером в 1886). 1829 г - «триады» Дёберейнера 1850 г «дифференциальные системы» Петтенкофера и Дюма. 1864г Мейер - таблица, показывающая соотношение атомных весов для нескольких характерных групп элементов. Ньюлендс - существование групп элементов, сходных по химическим свойствам. Колчина Н. 11 «А». Периодический закон, Периодическая система химических элементов Д. И. Менделеева.

«Средства гигиены и косметики» - В качестве моющего средства. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Для артистов Пудры Пероксид водорода. Значение слов. Косметические декоративные пудры – многокомпонентные смеси. Косметические средства. Выполнено: Шестериковой Светланой Ученицей 11 а класса ГОУ СОШ №186. Немного истории. I стадия. Функции моющего средства. Мыла и моющие средства.

«Серебро химия» - Азотнокислое серебро, или ляпис - кристаллы ромбической системы. Бородавка после прижигания нитратом серебра. Серебро в искусстве. AgNO3 очень хорошо растворимо. И какие опасности таит в себе загадочный металл? Образует сплавы со многими металлами. Большинство солей серебра слаборастворимы в воде, а все растворимые соединения – токсичны. Технологии получения чистого металлического серебра.



Понравилась статья? Поделиться с друзьями: